
HashFile

INHERITS FROM HashTable

REQUIRES HEADER FILES HashFile.h

DEFINED BY C.D. Lane (lane@sumex-aim.stanford.edu)

CLASS DESCRIPTION

HashFile implements a bridge between the hashed database library functions, db(3)

(used to implement the ’defaults’ database and Digital Librarian index files), and the

HashTable object. It can be viewed as an alternate interface to the database library

functions or as a type of HashTable that survives program execution.

Except for initial object creation, methods are a superset of those provided by

HashTable and a HashFile can be substituted for a HashTable in most code. In order

to maintain this similarity, the database file is closed when the free method is called

on the HashFile object, rather than having a separate method.

Database files created using the HashFile object can be manipulated using the utilities

dbCatenate, dbCompare, dbDescribe etc. on /usr/lib/database (see dbCatenate(1)).

The HashFile object uses a HashTable object as a buffer to optimize multiple access

to keys/values. Keys and values can be of type id , int, void *, char *, or any other

32-bit quantity that can be described by a type string and handed to NXReadType().

Descriptions must be invariant strings and are restricted to encode 32-bit quantities,

typically the following: “@” (id), “*” (char *), “i” (int)

Note that the “!” (other) type that HashTable accepts doesn’t really make sense here

as it has a different meaning to NXReadType(). Also, when using type id, "@", for

keys, objects that have the same content, though still distinct, are still mapped into the

same database file entry, thus not making for very useful keys. For hash files, the

printed representations of the keys, not their pointers, are compared for equality.

When the description is “%”, hashing and equality are same as for “*”. On reading,

however, the string is uniqued, using the NXUniqueString() function.

HashFiles must generally meet the same restrictions that a HashTable must satisfy.

Since the newFromFile: method will create a database file if one doesn’t exist, the

factory method isHashFile: can be used to determine if a file exists before opening it.

PRELIMINARY Uncommon Classes: HashFile 1

INSTANCE VARIABLES

Inherited from HashTable const char *keyDesc;

const char *valueDesc;

Declared in HashFile Database *db;

Data d;

const char *filename;

BOOL readOnly;

db open Database descriptor

d Data structure for accessing database file

filename Database name

readOnly Value indicating if database compressed or readonly

METHOD TYPES

Initializing and freeing a HashFile - initFromFile:

- initFromFile:keyDesc:

- initFromFile:keyDesc:valueDesc:

+ isHashFile:

- free:

 - freeKeys:values:

 - freeObjects

Emptying and copying a - copy

HashFile - empty

Manipulating table elements - count

- insertKey:value:

- isKey:

- removeKey:

- valueForKey:

Iterating over all elements - initState

- nextState:key:value:

Archiving - read:

- write:

2 PRELIMINARY

CLASS METHODS

isHashFile:

+ (BOOL) isHashFile:(const char *)name

True if database name exists (i.e., if directory and leaf files name.[DL] exist).

newFromFile:

+ newFromFile:(const char *)name

Returns a HashFile object that maps objects to objects, creating the directory and leaf

files name.[DL] if they don’t already exist. Returns nil on failure.

newFromFile:keyDesc:

+ newFromFile:(const char *)name keyDesc:(const char *)aKeyDesc

Returns a HashFile object that maps keys as described with aKeyDesc to objects.

newFromFile:keyDesc:valueDesc:

+ newFromFile:(const char *)name keyDesc:(const char *)aKeyDesc

valueDesc:(const char *)aValueDesc

Returns a HashFile object that maps keys and values as described with aKeyDesc and

aValueDesc.

INSTANCE METHODS

copy

− copy

Returns a new HashFile. Neither keys nor values are copied. Not implemented.

count

− (unsigned)count

Returns the number of objects in the database (>= the HashTable buffer’s count).

empty

− empty

Empties the database file and HashTable buffer.

free

− free

Closes the database, closing the directory and leaf files name.[DL] and flushing any

unwritten data to disk. Deallocates the HashTable buffer, but not the objects in it.

PRELIMINARY Uncommon Classes: HashFile 3

freeKeys:values:

− freeKeys:(void (*)(void *))keyFunc values:(void (*)(void *))valueFunc

Conditionally deallocates the database file’s elements but does not deallocate the file

itself. Not implemented.

freeObjects

− freeObjects

Deallocates every object in the HashTable buffer, but not the HashTable itself.

Strings are not recovered. Has no effect on the database file. To empty the database

file, use the empty method.

initState

− (NXHashState)initState

Iterating over all elements of a database file involves setting up an iteration state,

conceptually private to HashFile, and then progressing until all entries have been

visited. An example of counting elements in a table follows:

unsigned count = 0;

 const void *key, *value;

 NXHashState state = [hashfile initState];

 while([hashfile nextState:&state key:&key value:&value])

 count++;

initState begins the process of iteration through the database. You cannot have

multiple NXHashState instances active on the same HashFile at the same time.

See also: nextState:key:value:

insertKey:value:

− (void *)insertKey:(const void *)aKey value:(void *)aValue

Adds or updates akey/avalue pair. Returns (void *) nil on failure (eg. if database is

read-only).

isKey:

− (BOOL)isKey:(const void *)aKey

Indicates whether aKey is in the database.

nextState:key:value:

− (BOOL)nextState:(NXHashState *)aState

key:(const void **)aKey

value:(void **)aValue

Moves to the next entry in the database. No count, insertKey:, isKey:, removeKey:

nor valueForKey: should be done while iterating through the file. The order

4 PRELIMINARY

followed is uninteresting, being determined by a hash function. Returns NO when

the end of the database is reached. The values and keys are not entered into the

HashTable buffer.

See also: initState

read:

− read:(NXTypedStream *)stream

Reads the HashFile from the typed stream stream. Not implemented.

removeKey:

− (void *)removeKey:(const void *)aKey

Removes akey/avalue pair. Always returns (void *) nil (unfortunately).

valueForKey:

− (void *)valueForKey:(const void *)aKey

Returns the value mapped to aKey. Returns nil on failure (eg. if aKey is not in the

database file).

write:

− write:(NXTypedStream *)stream

Writes the HashFile to the typed stream stream. Not implemented.

REFERENCES

This document is derived from the following NeXT documents in

/NextLibrary/Documentation:

NeXT/SysRefMan/22_ClassSpecs/CommonClasses/HashTable.wn

Unix/ManPages/man3/db.3

Unix/ManPages/man1/dbCatenate.1

PRELIMINARY Uncommon Classes: HashFile 5

